Skip to content

Implement Categorical.searchsorted(v, side, sorter) #8420 #8972

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 3 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v0.15.2.txt
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,7 @@ Enhancements

- Added ability to export Categorical data to Stata (:issue:`8633`). See :ref:`here <io.stata-categorical>` for limitations of categorical variables exported to Stata data files.
- Added ability to export Categorical data to to/from HDF5 (:issue:`7621`). Queries work the same as if it was an object array. However, the ``category`` dtyped data is stored in a more efficient manner. See :ref:`here <io.hdf5-categorical>` for an example and caveats w.r.t. prior versions of pandas.
- Added support for ``searchsorted()`` on `Categorical` class (:issue:`8420`).
- Added support for ``utcfromtimestamp()``, ``fromtimestamp()``, and ``combine()`` on `Timestamp` class (:issue:`5351`).
- Added Google Analytics (`pandas.io.ga`) basic documentation (:issue:`8835`). See :ref:`here<remote_data.ga>`.
- Added flag ``order_categoricals`` to ``StataReader`` and ``read_stata`` to select whether to order imported categorical data (:issue:`8836`). See :ref:`here <io.stata-categorical>` for more information on importing categorical variables from Stata data files.
Expand Down
56 changes: 55 additions & 1 deletion pandas/core/categorical.py
Original file line number Diff line number Diff line change
Expand Up @@ -776,7 +776,61 @@ def nbytes(self):
return self._codes.nbytes + self._categories.values.nbytes

def searchsorted(self, v, side='left', sorter=None):
raise NotImplementedError("See https://github.com/pydata/pandas/issues/8420")
"""Find indices where elements should be inserted to maintain order.

Find the indices into a sorted Categorical `self` such that, if the
corresponding elements in `v` were inserted before the indices, the
order of `self` would be preserved.

Parameters
----------
v : array_like
Array-like values or a scalar value, to insert/search for in `self`.
side : {'left', 'right'}, optional
If 'left', the index of the first suitable location found is given.
If 'right', return the last such index. If there is no suitable
index, return either 0 or N (where N is the length of `a`).
sorter : 1-D array_like, optional
Optional array of integer indices that sort `self` into ascending
order. They are typically the result of ``np.argsort``.

Returns
-------
indices : array of ints
Array of insertion points with the same shape as `v`.

See Also
--------
Series.searchsorted
numpy.searchsorted

Notes
-----
Binary search is used to find the required insertion points.

Examples
--------
>>> x = pd.Categorical(['apple', 'bread', 'bread', 'cheese', 'milk' ])
[apple, bread, bread, cheese, milk]
Categories (4, object): [apple < bread < cheese < milk]
>>> x.searchsorted('bread')
array([1]) # Note: an array, not a scalar
>>> x.searchsorted(['bread'])
array([1])
>>> x.searchsorted(['bread', 'eggs'])
array([1, 4])
>>> x.searchsorted(['bread', 'eggs'], side='right')
array([3, 4]) # eggs before milk
>>> x = pd.Categorical(['apple', 'bread', 'bread', 'cheese', 'milk', 'donuts' ])
>>> x.searchsorted(['bread', 'eggs'], side='right', sorter=[0, 1, 2, 3, 5, 4])
array([3, 5]) # eggs after donuts, after switching milk and donuts
"""
if not self.ordered:
raise ValueError("searchsorted requires an ordered Categorical.")

from pandas.core.series import Series
values_as_codes = self.categories.values.searchsorted(Series(v).values, side)
return self.codes.searchsorted(values_as_codes, sorter=sorter)

def isnull(self):
"""
Expand Down
46 changes: 40 additions & 6 deletions pandas/tests/test_categorical.py
Original file line number Diff line number Diff line change
Expand Up @@ -888,13 +888,47 @@ def test_nbytes(self):
self.assertEqual(cat.nbytes, exp)

def test_searchsorted(self):
# https://github.com/pydata/pandas/issues/8420
s1 = pd.Series(['apple', 'bread', 'bread', 'cheese', 'milk' ])
s2 = pd.Series(['apple', 'bread', 'bread', 'cheese', 'milk', 'donuts' ])
c1 = pd.Categorical(s1)
c2 = pd.Categorical(s2)

# Single item array
res = c1.searchsorted(['bread'])
chk = s1.searchsorted(['bread'])
exp = np.array([1])
self.assert_numpy_array_equal(res, exp)
self.assert_numpy_array_equal(res, chk)

# See https://github.com/pydata/pandas/issues/8420
# TODO: implement me...
cat = pd.Categorical([1,2,3])
def f():
cat.searchsorted(3)
self.assertRaises(NotImplementedError, f)
# Scalar version of single item array
# Categorical return np.array like pd.Series, but different from np.array.searchsorted()
res = c1.searchsorted('bread')
chk = s1.searchsorted('bread')
exp = np.array([1])
self.assert_numpy_array_equal(res, exp)
self.assert_numpy_array_equal(res, chk)

# Searching for a value that is not present in the Categorical
res = c1.searchsorted(['bread', 'eggs'])
chk = s1.searchsorted(['bread', 'eggs'])
exp = np.array([1, 4])
self.assert_numpy_array_equal(res, exp)
self.assert_numpy_array_equal(res, chk)

# Searching for a value that is not present, to the right
res = c1.searchsorted(['bread', 'eggs'], side='right')
chk = s1.searchsorted(['bread', 'eggs'], side='right')
exp = np.array([3, 4]) # eggs before milk
self.assert_numpy_array_equal(res, exp)
self.assert_numpy_array_equal(res, chk)

# As above, but with a sorter array to reorder an unsorted array
res = c2.searchsorted(['bread', 'eggs'], side='right', sorter=[0, 1, 2, 3, 5, 4])
chk = s2.searchsorted(['bread', 'eggs'], side='right', sorter=[0, 1, 2, 3, 5, 4])
exp = np.array([3, 5]) # eggs after donuts, after switching milk and donuts
self.assert_numpy_array_equal(res, exp)
self.assert_numpy_array_equal(res, chk)

def test_deprecated_labels(self):
# TODO: labels is deprecated and should be removed in 0.18 or 2017, whatever is earlier
Expand Down