Skip to content

feat: np update square and dot product #1111

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jun 19, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 13 additions & 2 deletions src/TensorFlowNET.Core/APIs/tf.math.cs
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@ You may obtain a copy of the License at
limitations under the License.
******************************************************************************/

using Tensorflow.NumPy;
using Tensorflow.Operations;

namespace Tensorflow
Expand Down Expand Up @@ -42,7 +43,6 @@ public Tensor erf(Tensor x, string name = null)

public Tensor multiply(Tensor x, Tensor y, string name = null)
=> math_ops.multiply(x, y, name: name);

public Tensor divide_no_nan(Tensor a, Tensor b, string name = null)
=> math_ops.div_no_nan(a, b);

Expand Down Expand Up @@ -452,7 +452,18 @@ public Tensor multiply(Tensor x, Tensor y, string name = null)
/// <returns></returns>
public Tensor multiply<Tx, Ty>(Tx x, Ty y, string name = null)
=> gen_math_ops.mul(ops.convert_to_tensor(x), ops.convert_to_tensor(y), name: name);

/// <summary>
/// return scalar product
/// </summary>
/// <typeparam name="Tx"></typeparam>
/// <typeparam name="Ty"></typeparam>
/// <param name="x"></param>
/// <param name="y"></param>
/// <param name="axes"></param>
/// <param name="name"></param>
/// <returns></returns>
public Tensor dot_prod<Tx, Ty>(Tx x, Ty y, NDArray axes, string name = null)
=> math_ops.tensordot(convert_to_tensor(x), convert_to_tensor(y), axes, name: name);
public Tensor negative(Tensor x, string name = null)
=> gen_math_ops.neg(x, name);

Expand Down
23 changes: 22 additions & 1 deletion src/TensorFlowNET.Core/Binding.Util.cs
Original file line number Diff line number Diff line change
Expand Up @@ -486,7 +486,28 @@ public static Shape GetShape(this object data)
throw new NotImplementedException("");
}
}

public static NDArray GetFlattenArray(NDArray x)
{
switch (x.GetDataType())
{
case TF_DataType.TF_FLOAT:
x = x.ToArray<float>();
break;
case TF_DataType.TF_DOUBLE:
x = x.ToArray<double>();
break;
case TF_DataType.TF_INT16:
case TF_DataType.TF_INT32:
x = x.ToArray<int>();
break;
case TF_DataType.TF_INT64:
x = x.ToArray<long>();
break;
default:
break;
}
return x;
}
public static TF_DataType GetDataType(this object data)
{
var type = data.GetType();
Expand Down
21 changes: 21 additions & 0 deletions src/TensorFlowNET.Core/NumPy/Numpy.Math.cs
Original file line number Diff line number Diff line change
Expand Up @@ -49,9 +49,30 @@ public static NDArray prod(NDArray array, Axis? axis = null, Type? dtype = null,
[AutoNumPy]
public static NDArray prod<T>(params T[] array) where T : unmanaged
=> new NDArray(tf.reduce_prod(new NDArray(array)));
[AutoNumPy]
public static NDArray dot(NDArray x1, NDArray x2, NDArray? axes = null, string? name = null)
{
//if axes mentioned
if (axes != null)
{
return new NDArray(tf.dot_prod(x1, x2, axes, name));
}
if (x1.shape.ndim > 1)
{
x1 = GetFlattenArray(x1);
}
if (x2.shape.ndim > 1)
{
x2 = GetFlattenArray(x2);
}
//if axes not mentioned, default 0,0
return new NDArray(tf.dot_prod(x1, x2, axes: new int[] { 0, 0 }, name));

}
[AutoNumPy]
public static NDArray power(NDArray x, NDArray y) => new NDArray(tf.pow(x, y));
[AutoNumPy]
public static NDArray square(NDArray x) => new NDArray(tf.square(x));

[AutoNumPy]
public static NDArray sin(NDArray x) => new NDArray(math_ops.sin(x));
Expand Down
29 changes: 28 additions & 1 deletion test/TensorFlowNET.UnitTest/Numpy/Math.Test.cs
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,34 @@ public void power()
var y = np.power(x, 3);
Assert.AreEqual(y, new[] { 0, 1, 8, 27, 64, 125 });
}
[TestMethod]
[TestMethod]
public void square()
{
var x = np.arange(6);
var y = np.square(x);
Assert.AreEqual(y, new[] { 0, 1, 4, 9, 16, 25 });
}
[TestMethod]
public void dotproduct()
{
var x1 = new NDArray(new[] { 1, 2, 3 });
var x2 = new NDArray(new[] { 4, 5, 6 });
double result1 = np.dot(x1, x2);
NDArray y1 = new float[,] {
{ 1.0f, 2.0f, 3.0f },
{ 4.0f, 5.1f,6.0f },
{ 4.0f, 5.1f,6.0f }
};
NDArray y2 = new float[,] {
{ 3.0f, 2.0f, 1.0f },
{ 6.0f, 5.1f, 4.0f },
{ 6.0f, 5.1f, 4.0f }
};
double result2 = np.dot(y1, y2);
Assert.AreEqual(result1, 32);
Assert.AreEqual(Math.Round(result2, 2), 158.02);
}
[TestMethod]
public void maximum()
{
var x1 = new NDArray(new[,] { { 1, 2, 3 }, { 4, 5.1, 6 } });
Expand Down