diff --git a/doc/python/bio-alignment-chart.md b/doc/python/bio-alignment-chart.md index 52806d83931..1810857140f 100644 --- a/doc/python/bio-alignment-chart.md +++ b/doc/python/bio-alignment-chart.md @@ -44,7 +44,7 @@ Note that the AlignmentChart only returns a chart of the sequence, while Alignme import plotly.express as px import pandas as pd -df = (pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/Dash_Bio/Genetic/gene_conservation.csv') +df = (pd.read_csv('https://git.io/gene_conservation.csv') .set_index('0') .loc[['consensus','conservation']] .T @@ -56,7 +56,7 @@ fig.show() ## Alignment Chart in dash_bio -```python no_display=true +```python hide_code=true from IPython.display import IFrame snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/' IFrame(snippet_url + 'bio-alignmentchart', width='100%', height=630) diff --git a/doc/python/bio-clustergram.md b/doc/python/bio-clustergram.md index d98b6a58268..67d84601b75 100644 --- a/doc/python/bio-clustergram.md +++ b/doc/python/bio-clustergram.md @@ -40,10 +40,7 @@ import pandas as pd import dash_bio -df = pd.read_csv( - 'https://raw.githubusercontent.com/plotly/datasets/master/Dash_Bio/Chromosomal/' + - 'clustergram_brain_cancer.csv', -) +df = pd.read_csv('https://git.io/clustergram_brain_cancer.csv') dash_bio.Clustergram( data=df, @@ -62,10 +59,8 @@ Change the colors of the dendrogram traces that are used to represent clusters, import pandas as pd import dash_bio -df = pd.read_csv( - 'https://raw.githubusercontent.com/plotly/datasets/master/Dash_Bio/Chromosomal/' + - 'clustergram_brain_cancer.csv', -) + +df = pd.read_csv('https://git.io/clustergram_brain_cancer.csv') dash_bio.Clustergram( data=df, @@ -90,10 +85,8 @@ Change the relative width and height of, respectively, the row and column dendro import pandas as pd import dash_bio -df = pd.read_csv( - 'https://raw.githubusercontent.com/plotly/datasets/master/Dash_Bio/Chromosomal/' + - 'clustergram_brain_cancer.csv', -) + +df = pd.read_csv('https://git.io/clustergram_brain_cancer.csv') dash_bio.Clustergram( data=df, @@ -107,7 +100,7 @@ dash_bio.Clustergram( ## Clustergram with Dash -```python no_display=true +```python hide_code=true from IPython.display import IFrame snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/' IFrame(snippet_url + 'bio-clustergram', width='100%', height=630) diff --git a/doc/python/bio-manhattanplot.md b/doc/python/bio-manhattanplot.md index 5fa417cc021..381da0b9622 100644 --- a/doc/python/bio-manhattanplot.md +++ b/doc/python/bio-manhattanplot.md @@ -40,7 +40,8 @@ ManhattanPlot allows you to visualize genome-wide association studies (GWAS) eff import pandas as pd import dash_bio -df = pd.read_csv('https://raw.githubusercontent.com/plotly/dash-bio-docs-files/master/manhattan_data.csv') + +df = pd.read_csv('https://git.io/manhattan_data.csv') dash_bio.ManhattanPlot( @@ -56,7 +57,7 @@ import pandas as pd import dash_bio -df = pd.read_csv('https://raw.githubusercontent.com/plotly/dash-bio-docs-files/master/manhattan_data.csv') +df = pd.read_csv('https://git.io/manhattan_data.csv') dash_bio.ManhattanPlot( dataframe=df, @@ -68,7 +69,7 @@ dash_bio.ManhattanPlot( ## ManhattanPlot with Dash -```python no_display=true +```python hide_code=true from IPython.display import IFrame snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/' IFrame(snippet_url + 'bio-manhattanplot', width='100%', height=630) diff --git a/doc/python/bio-volcano-plot.md b/doc/python/bio-volcano-plot.md index 7089b1ae969..9d1bf6a2b09 100644 --- a/doc/python/bio-volcano-plot.md +++ b/doc/python/bio-volcano-plot.md @@ -41,10 +41,7 @@ import pandas as pd import dash_bio -df = pd.read_csv( - 'https://raw.githubusercontent.com/plotly/dash-bio-docs-files/master/' + - 'volcano_data1.csv' -) +df = pd.read_csv('https://git.io/volcano_data1.csv') dash_bio.VolcanoPlot( dataframe=df, @@ -59,7 +56,8 @@ Change the size of the points on the scatter plot, and the widths of the effect import pandas as pd import dash_bio -df = pd.read_csv('https://raw.githubusercontent.com/plotly/dash-bio-docs-files/master/volcano_data1.csv') + +df = pd.read_csv('https://git.io/volcano_data1.csv') dash_bio.VolcanoPlot( dataframe=df, @@ -71,7 +69,7 @@ dash_bio.VolcanoPlot( ## VolcanoPlot with Dash -```python no_display=true +```python hide_code=true from IPython.display import IFrame snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/' IFrame(snippet_url + 'bio-volcano', width='100%', height=630)