diff --git a/doc/source/visualization.rst b/doc/source/visualization.rst index f30d6c9d5d4c0..dcaed58e61af4 100644 --- a/doc/source/visualization.rst +++ b/doc/source/visualization.rst @@ -1566,15 +1566,11 @@ customization is not (yet) supported by pandas. Series and DataFrame objects behave like arrays and can therefore be passed directly to matplotlib functions without explicit casts. -pandas also automatically registers formatters and locators that recognize date -indices, thereby extending date and time support to practically all plot types -available in matplotlib. Although this formatting does not provide the same -level of refinement you would get when plotting via pandas, it can be faster -when plotting a large number of points. - .. note:: - The speed up for large data sets only applies to pandas 0.14.0 and later. + Starting from pandas 0.15, you will need to use a ``to_pydatetime()`` + call on the index in order to have matplotlib plot a ``DatetimeIndex`` as + dates. .. ipython:: python :suppress: @@ -1590,10 +1586,10 @@ when plotting a large number of points. plt.figure() - plt.plot(price.index, price, 'k') - plt.plot(ma.index, ma, 'b') + plt.plot(price.index.to_pydatetime(), price, 'k') + plt.plot(ma.index.to_pydatetime(), ma, 'b') @savefig bollinger.png - plt.fill_between(mstd.index, ma-2*mstd, ma+2*mstd, color='b', alpha=0.2) + plt.fill_between(mstd.index.to_pydatetime(), ma-2*mstd, ma+2*mstd, color='b', alpha=0.2) .. ipython:: python :suppress: