diff --git a/doc/source/whatsnew/v3.0.0.rst b/doc/source/whatsnew/v3.0.0.rst index 157b87c93e729..700256389441f 100644 --- a/doc/source/whatsnew/v3.0.0.rst +++ b/doc/source/whatsnew/v3.0.0.rst @@ -198,9 +198,11 @@ Removal of prior version deprecations/changes - All arguments in :meth:`Series.to_dict` are now keyword only (:issue:`56493`) - Changed the default value of ``observed`` in :meth:`DataFrame.groupby` and :meth:`Series.groupby` to ``True`` (:issue:`51811`) - Enforced deprecation disallowing parsing datetimes with mixed time zones unless user passes ``utc=True`` to :func:`to_datetime` (:issue:`57275`) +- Enforced deprecation of :meth:`.DataFrameGroupBy.get_group` and :meth:`.SeriesGroupBy.get_group` allowing the ``name`` argument to be a non-tuple when grouping by a list of length 1 (:issue:`54155`) - Enforced deprecation of ``axis=None`` acting the same as ``axis=0`` in the DataFrame reductions ``sum``, ``prod``, ``std``, ``var``, and ``sem``, passing ``axis=None`` will now reduce over both axes; this is particularly the case when doing e.g. ``numpy.sum(df)`` (:issue:`21597`) - Enforced silent-downcasting deprecation for :ref:`all relevant methods ` (:issue:`54710`) - In :meth:`DataFrame.stack`, the default value of ``future_stack`` is now ``True``; specifying ``False`` will raise a ``FutureWarning`` (:issue:`55448`) +- Iterating over a :class:`.DataFrameGroupBy` or :class:`.SeriesGroupBy` will return tuples of length 1 for the groups when grouping by ``level`` a list of length 1 (:issue:`50064`) - Methods ``apply``, ``agg``, and ``transform`` will no longer replace NumPy functions (e.g. ``np.sum``) and built-in functions (e.g. ``min``) with the equivalent pandas implementation; use string aliases (e.g. ``"sum"`` and ``"min"``) if you desire to use the pandas implementation (:issue:`53974`) - Passing both ``freq`` and ``fill_value`` in :meth:`DataFrame.shift` and :meth:`Series.shift` and :meth:`.DataFrameGroupBy.shift` now raises a ``ValueError`` (:issue:`54818`) - Removed :meth:`DateOffset.is_anchored` and :meth:`offsets.Tick.is_anchored` (:issue:`56594`) diff --git a/pandas/core/groupby/groupby.py b/pandas/core/groupby/groupby.py index 61168f71f4924..d5d57a4f7402f 100644 --- a/pandas/core/groupby/groupby.py +++ b/pandas/core/groupby/groupby.py @@ -920,17 +920,9 @@ def get_group(self, name) -> DataFrame | Series: ): # GH#25971 if isinstance(name, tuple) and len(name) == 1: - # Allow users to pass tuples of length 1 to silence warning name = name[0] - elif not isinstance(name, tuple): - warnings.warn( - "When grouping with a length-1 list-like, " - "you will need to pass a length-1 tuple to get_group in a future " - "version of pandas. Pass `(name,)` instead of `name` to silence " - "this warning.", - FutureWarning, - stacklevel=find_stack_level(), - ) + else: + raise KeyError(name) inds = self._get_index(name) if not len(inds): @@ -1016,18 +1008,11 @@ def __iter__(self) -> Iterator[tuple[Hashable, NDFrameT]]: keys = self.keys level = self.level result = self._grouper.get_iterator(self._selected_obj) - # error: Argument 1 to "len" has incompatible type "Hashable"; expected "Sized" - if is_list_like(level) and len(level) == 1: # type: ignore[arg-type] - # GH 51583 - warnings.warn( - "Creating a Groupby object with a length-1 list-like " - "level parameter will yield indexes as tuples in a future version. " - "To keep indexes as scalars, create Groupby objects with " - "a scalar level parameter instead.", - FutureWarning, - stacklevel=find_stack_level(), - ) - if isinstance(keys, list) and len(keys) == 1: + # mypy: Argument 1 to "len" has incompatible type "Hashable"; expected "Sized" + if ( + (is_list_like(level) and len(level) == 1) # type: ignore[arg-type] + or (isinstance(keys, list) and len(keys) == 1) + ): # GH#42795 - when keys is a list, return tuples even when length is 1 result = (((key,), group) for key, group in result) return result diff --git a/pandas/tests/groupby/test_categorical.py b/pandas/tests/groupby/test_categorical.py index 76c8a6fdb9570..6b8eda13aa3e6 100644 --- a/pandas/tests/groupby/test_categorical.py +++ b/pandas/tests/groupby/test_categorical.py @@ -252,11 +252,7 @@ def test_level_get_group(observed): names=["Index1", "Index2"], ), ) - msg = "you will need to pass a length-1 tuple" - with tm.assert_produces_warning(FutureWarning, match=msg): - # GH#25971 - warn when not passing a length-1 tuple - result = g.get_group("a") - + result = g.get_group(("a",)) tm.assert_frame_equal(result, expected) diff --git a/pandas/tests/groupby/test_groupby.py b/pandas/tests/groupby/test_groupby.py index 686279f25939a..c5727f922ae69 100644 --- a/pandas/tests/groupby/test_groupby.py +++ b/pandas/tests/groupby/test_groupby.py @@ -2533,19 +2533,14 @@ def test_groupby_string_dtype(): @pytest.mark.parametrize( "level_arg, multiindex", [([0], False), ((0,), False), ([0], True), ((0,), True)] ) -def test_single_element_listlike_level_grouping_deprecation(level_arg, multiindex): +def test_single_element_listlike_level_grouping(level_arg, multiindex): # GH 51583 df = DataFrame({"a": [1, 2], "b": [3, 4], "c": [5, 6]}, index=["x", "y"]) if multiindex: df = df.set_index(["a", "b"]) - depr_msg = ( - "Creating a Groupby object with a length-1 list-like " - "level parameter will yield indexes as tuples in a future version. " - "To keep indexes as scalars, create Groupby objects with " - "a scalar level parameter instead." - ) - with tm.assert_produces_warning(FutureWarning, match=depr_msg): - [key for key, _ in df.groupby(level=level_arg)] + result = [key for key, _ in df.groupby(level=level_arg)] + expected = [(1,), (2,)] if multiindex else [("x",), ("y",)] + assert result == expected @pytest.mark.parametrize("func", ["sum", "cumsum", "cumprod", "prod"]) @@ -2887,22 +2882,18 @@ def test_groupby_series_with_datetimeindex_month_name(): "kwarg, value, name, warn", [ ("by", "a", 1, None), - ("by", ["a"], 1, FutureWarning), ("by", ["a"], (1,), None), ("level", 0, 1, None), - ("level", [0], 1, FutureWarning), ("level", [0], (1,), None), ], ) -def test_depr_get_group_len_1_list_likes(test_series, kwarg, value, name, warn): +def test_get_group_len_1_list_likes(test_series, kwarg, value, name, warn): # GH#25971 obj = DataFrame({"b": [3, 4, 5]}, index=Index([1, 1, 2], name="a")) if test_series: obj = obj["b"] gb = obj.groupby(**{kwarg: value}) - msg = "you will need to pass a length-1 tuple" - with tm.assert_produces_warning(warn, match=msg): - result = gb.get_group(name) + result = gb.get_group(name) if test_series: expected = Series([3, 4], index=Index([1, 1], name="a"), name="b") else: