Skip to content

BUG: bug in DataFrame.groupby(Grouper) triggers a ValueError exception in cython generate_bins_dt64() code #43896

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
3 tasks done
sgkdev opened this issue Oct 5, 2021 · 0 comments
Labels
Bug Frequency DateOffsets Groupby Resample resample method

Comments

@sgkdev
Copy link

sgkdev commented Oct 5, 2021

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the master branch of pandas.

Reproducible Example

import pandas as pd
import numpy as np
index=pd.date_range('2019-12-31T00:10:00', '2020-01-31T00:10:00', freq='1T')
df = pd.DataFrame(np.zeros(len(index)), index=index)
grouper = pd.Grouper(freq='2D', closed='right')
sampled = df.groupby(grouper).sum()

Issue Description

The groupby() call creates a new Resampler object which builds the bins calling the _get_times_bins() function.
This function detects the first/last entries using the origin and the close semantic and calls the date_range() helper to get the bins intervals which, in our example, are the following:

DatetimeIndex(['2019-12-31',` '2020-01-02', '2020-01-04', '2020-01-06',
               '2020-01-08', '2020-01-10', '2020-01-12', '2020-01-14',
               '2020-01-16', '2020-01-18', '2020-01-20', '2020-01-22',
               '2020-01-24', '2020-01-26', '2020-01-28', '2020-01-30',
               '2020-02-01'],
              dtype='datetime64[ns]', freq='2D')

at this point the function calls into _self.adjust_bin_edges(self, binner, ax_values) passing the bins and the actual source values.

def _adjust_bin_edges(self, binner, ax_values):
    # Some hacks for > daily data, see #1471, #1458, #1483

    if self.freq != "D" and is_superperiod(self.freq, "D"):
        if self.closed == "right":
            # GH 21459, GH 9119: Adjust the bins relative to the wall time
            bin_edges = binner.tz_localize(None)
            bin_edges = bin_edges + timedelta(1) - Nano(1)
            bin_edges = bin_edges.tz_localize(binner.tz).asi8
        else:
            bin_edges = binner.asi8

        # intraday values on last day
        if bin_edges[-2] > ax_values.max():
            bin_edges = bin_edges[:-1]
            binner = binner[:-1]
    else:
        bin_edges = binner.asi8
    return binner, bin_edges 

which seems to have some old spaghetti-code which tries to fix old issues...

if the frequency is not a single Day (???) (like in our example freq='2D') and is_superperiod() function (which seems broken given that it checks only the base/role frequency instead of the whole one: aka it can't detect that 2D is not a superperiod of D or that 48H is semantically the same as 2D.. etc...) returns True the code enters this code segment which adds to every bin interval a whole day without the last nanosecond transforming the first entry into something like this:

DatetimeIndex(['2019-12-31 23:59:59.999999999',
               '2020-01-02 23:59:59.999999999',
               '2020-01-04 23:59:59.999999999',
               ...
               ...
               '2020-02-01 23:59:59.999999999'],
              dtype='datetime64[ns]', freq='2D')

which is totally nonsense given that the code later calls the generic cython lib.generate_bins_dt64() which compares the actual entries starting from '2019-12-31T00:10:00' to the first bin entry which is now a new 'edged' value '2019-12-31 23:59:59.999999999'. This in turn triggers the first sanity check since the first bin value is in the future in respect to the first value:

@cython.boundscheck(False)
@cython.wraparound(False)
def generate_bins_dt64(ndarray[int64_t] values, const int64_t[:] binner,
                       object closed='left', bint hasnans=False):

    ...
    ...

    # check binner fits data
    if values[0] < binner[0]:
        raise ValueError("Values falls before first bin")

Expected Behavior

The groupby() function should return without any exception.

Installed Versions

pd.show_versions()

INSTALLED VERSIONS

commit : 73c6825
python : 3.8.8.final.0
python-bits : 64
OS : Linux
OS-release : 4.15.0-140-generic
Version : #144~16.04.1-Ubuntu SMP Fri Mar 19 21:24:12 UTC 2021
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 1.3.3
numpy : 1.21.2
pytz : 2021.1
dateutil : 2.8.1
pip : 21.0.1
setuptools : 54.2.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.3
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None

@sgkdev sgkdev added Bug Needs Triage Issue that has not been reviewed by a pandas team member labels Oct 5, 2021
@mroeschke mroeschke added Frequency DateOffsets Resample resample method and removed Needs Triage Issue that has not been reviewed by a pandas team member labels Oct 13, 2021
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Bug Frequency DateOffsets Groupby Resample resample method
Projects
None yet
Development

No branches or pull requests

3 participants