Skip to content

Commit 07ac63c

Browse files
committed
Remove redundant and error-prone bibkey.
Remove outdated taxonomies.
1 parent 1ab0a10 commit 07ac63c

File tree

426 files changed

+3
-575
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

426 files changed

+3
-575
lines changed

_includes/sidebar.html

-2
Original file line numberDiff line numberDiff line change
@@ -17,8 +17,6 @@ <h1>
1717
<a class="sidebar-nav-item{% if page.url == "/tsne-viz.html" %} active{% endif %}" href="{% link tsne-viz.html %}">2D Map of Papers</a>
1818
<a class="sidebar-nav-item{% if page.url == "/topic-viz.html" %} active{% endif %}" href="{% link topic-viz.html %}">Topic-based Explorer</a>
1919

20-
<a class="sidebar-nav-item{% if page.url == "/base-taxonomy/" %} active{% endif %}" href="{% link base-taxonomy/index.md %}">Core Taxonomy</a>
21-
2220

2321
<a class="sidebar-nav-item{% if page.url == "/resources.html" %} active{% endif %}" href="{% link resources.md %}">Resources, Courses &#38; Events</a>
2422
<a class="sidebar-nav-item{% if page.url == "/contributing.html" %} active{% endif %}" href="{% link contributing.markdown %}">Contributing</a>

_layouts/publication.html

+1-2
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,6 @@ <h5>{{ page.authors }}. {{ page.conference }} {{ page.year }}</h5>
1111
{% endfor %}
1212
&nbsp;<a href='http://scholar.google.com/scholar?q={{ page.title }}' target="_blank"><img style="display: inline; margin: 0;" src="/public/media/google-scholar.png"/></a>
1313
&nbsp;<a href='https://www.semanticscholar.org/search?q={{ page.title }}' target="_blank"><img style="display: inline; margin: 0;" src="/public/media/semscholar.png"/></a>
14-
&nbsp;<a href='http://academic.microsoft.com/#/search?iq={{ page.title | uri_escape }}' target="_blank"><img style="display: inline; margin: 0;" src="/public/media/ms-academic.png"/></a>
1514
<br/>
1615
{% for tag in page.tags %}
1716
<tag><a href="/tags.html#{{ tag }}">{{ tag }}</a></tag>
@@ -29,7 +28,7 @@ <h6>Similar Work</h6>
2928
<script>
3029
$(document).ready(
3130
function() {
32-
$.getJSON('/publications-metadata/{{ page.bibkey }}.json', function(data) {
31+
$.getJSON("/publications-metadata/{{ page.path | replace_first: '_publications/', '' | replace: '.markdown', '' }}.json", function(data) {
3332
num_papers = data.length;
3433
html = "";
3534
for (let i=0; i < num_papers; i++) {

_publications/abdelaziz2020graph4code.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: "Graph4Code: A Machine Interpretable Knowledge Graph for Code"
44
authors: Ibrahim Abdelaziz, Julian Dolby, James P. McCusker, Kavitha Srinivas
55
conference:
66
year: 2020
7-
bibkey: abdelaziz2020graph4code
87
additional_links:
98
- {name: "ArXiV", url: "https://arxiv.org/abs/2002.09440"}
109
- {name: "Website", url: "https://wala.github.io/graph4code/"}

_publications/agashe2019julce.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: "JuICe: A Large Scale Distantly Supervised Dataset for Open Domain Contex
44
authors: Rajas Agashe, Srinivasan Iyer, Luke Zettlemoyer
55
conference:
66
year: 2019
7-
bibkey: agashe2019julce
87
additional_links:
98
- {name: "ArXiV", url: "https://arxiv.org/abs/1910.02216"}
109
- {name: "Dataset", url: "https://drive.google.com/file/d/1xWDV__5hjTWVuJlXD42Ar7nkjU2hRTic/view?usp=sharing"}

_publications/aggarwal2015using.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: "Using Machine Translation for Converting Python 2 to Python 3 Code"
44
authors: Karan Aggarwal, Mohammad Salameh, Abram Hindle
55
conference:
66
year: 2015
7-
bibkey: aggarwal2015using
87
tags: ["migration"]
98
---
109
In this paper, we have tried to use Statistical machine translation in order to convert Python 2 code to Python 3 code. We use data from two projects and achieve a high BLEU score. We also investigate the cross-project training and testing to analyze the errors so as to ascertain differences with previous case. We have described a pilot study on modeling programming languages as natural language to build translation models on the lines of natural languages. This can be further worked on to translate between versions of a programming language or cross-programming-languages code translation.

_publications/ahmad2020transformer.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: "A Transformer-based Approach for Source Code Summarization"
44
authors: Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang
55
conference: ACL
66
year: 2020
7-
bibkey: ahmad2020transformer
87
additional_links:
98
- {name: "ArXiV", url: "https://arxiv.org/abs/2005.00653"}
109
- {name: "Code", url: "https://github.com/wasiahmad/NeuralCodeSum"}

_publications/ahmad2021unified.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: "Unified Pre-training for Program Understanding and Generation"
44
authors: Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang
55
conference: NAACL
66
year: 2021
7-
bibkey: ahmad2021unified
87
additional_links:
98
- {name: "ArXiV", url: "https://arxiv.org/abs/2103.06333"}
109
tags: ["pretraining", "Transformer"]

_publications/ahmed2019learning.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: "Learning Lenient Parsing & Typing via Indirect Supervision"
44
authors: Toufique Ahmed, Vincent Hellendoorn, Premkumar Devanbu
55
conference:
66
year: 2019
7-
bibkey: ahmed2019learning
87
additional_links:
98
- {name: "ArXiV", url: "https://arxiv.org/abs/1910.05879"}
109
tags: ["types"]

_publications/alet2021largescale.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: A large-scale benchmark for few-shot program induction and synthesis
44
authors: Ferran Alet, Javier Lopez-Contreras, James Koppel, Maxwell Nye, Armando Solar-Lezama, Tomas Lozano-Perez, Leslie Kaelbling, Joshua Tenenbaum
55
conference: ICML
66
year: 2021
7-
bibkey: alet2021largescale
87
additional_links:
98
- {name: "PMLR", url: "http://proceedings.mlr.press/v139/alet21a.html"}
109
- {name: "website", url: "https://lis.csail.mit.edu/progres"}

_publications/allamanis2013mining.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: "Mining Source Code Repositories at Massive Scale Using Language Modeling
44
authors: Miltiadis Allamanis, Charles Sutton
55
conference: MSR
66
year: 2013
7-
bibkey: allamanis2013mining
87
additional_links:
98
- {name: "PDF", url: "http://homepages.inf.ed.ac.uk/csutton/publications/msr2013.pdf"}
109
- {name: "data", url: "http://groups.inf.ed.ac.uk/cup/javaGithub/"}

_publications/allamanis2014learning.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: Learning Natural Coding Conventions
44
authors: Miltiadis Allamanis, Earl T. Barr, Christian Bird, Charles Sutton
55
conference: FSE
66
year: 2014
7-
bibkey: allamanis2014learning
87
additional_links:
98
- {name: "PDF", url: "http://homepages.inf.ed.ac.uk/csutton/publications/naturalize.pdf"}
109
- {name: "ArXiV", url: "http://arxiv.org/abs/1402.4182"}

_publications/allamanis2014mining.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: "Mining Idioms from Source Code"
44
authors: Miltiadis Allamanis, Charles Sutton
55
conference: FSE
66
year: 2014
7-
bibkey: allamanis2014mining
87
additional_links:
98
- {name: "PDF", url: "http://homepages.inf.ed.ac.uk/csutton/publications/idioms.pdf"}
109
- {name: "ArXiV", url: "http://arxiv.org/abs/1404.0417"}

_publications/allamanis2015bimodal.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: A Bimodal Modelling of Source Code and Natural Language
44
authors: Miltiadis Allamanis, Daniel Tarlow, Andrew Gordon, Yi Wei
55
conference: ICML
66
year: 2015
7-
bibkey: allamanis2015bimodal
87
additional_links:
98
- {name: "Supplementary Material", url: "https://miltos.allamanis.com/publicationfiles/allamanis2015bimodal/supplementary.pdf"}
109
- {name: "Presentation Video", url: "http://videolectures.net/icml2015_allamanis_natural_language/"}

_publications/allamanis2015suggesting.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: Suggesting Accurate Method and Class Names
44
authors: Miltiadis Allamanis, Earl T. Barr, Christian Bird, Charles Sutton
55
conference: FSE
66
year: 2015
7-
bibkey: allamanis2015suggesting
87
additional_links:
98
- {name: "PDF", url: "http://homepages.inf.ed.ac.uk/csutton/publications/accurate-method-and-class.pdf"}
109
- {name: "website", url: "http://groups.inf.ed.ac.uk/cup/naturalize"}

_publications/allamanis2016convolutional.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: A Convolutional Attention Network for Extreme Summarization of Source Cod
44
authors: Miltiadis Allamanis, Hao Peng, Charles Sutton
55
conference: ICML
66
year: 2016
7-
bibkey: allamanis2016convolutional
87
additional_links:
98
- {name: "website", url: "http://groups.inf.ed.ac.uk/cup/codeattention/"}
109
- {name: "code", url: "https://github.com/mast-group/convolutional-attention"}

_publications/allamanis2017mining.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: Mining Semantic Loop Idioms from Big Code
44
authors: Miltiadis Allamanis, Earl T. Barr, Christian Bird, Mark Marron, Charles Sutton
55
conference: "TSE"
66
year: 2017
7-
bibkey: allamanis2017mining
87
additional_links:
98
- {name: "MSR Technical Report", url: "https://www.microsoft.com/en-us/research/publication/mining-semantic-loop-idioms-big-code/"}
109
- {name: "website", url: "http://groups.inf.ed.ac.uk/cup/semantic-idioms/"}

_publications/allamanis2017smartpaste.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: "SmartPaste: Learning to Adapt Source Code"
44
authors: Miltiadis Allamanis, Marc Brockschmidt
55
conference: ""
66
year: 2017
7-
bibkey: allamanis2017smartpaste
87
additional_links:
98
- {name: "ArXiV", url: "https://arxiv.org/abs/1705.07867"}
109
tags: ["representation", "variable misuse"]

_publications/allamanis2018learning.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: Learning to Represent Programs with Graphs
44
authors: Miltiadis Allamanis, Marc Brockschmidt, Mahmoud Khademi
55
conference: "ICLR"
66
year: 2018
7-
bibkey: allamanis2018learning
87
additional_links:
98
- {name: "ArXiV", url: "https://arxiv.org/abs/1711.00740"}
109
- {name: "GGNN Code", url: "https://github.com/Microsoft/gated-graph-neural-network-samples"}

_publications/allamanis2019adverse.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: "The Adverse Effects of Code Duplication in Machine Learning Models of Co
44
authors: Miltiadis Allamanis
55
conference:
66
year: 2019
7-
bibkey: allamanis2019adverse
87
additional_links:
98
- {name: "ArXiV", url: "https://arxiv.org/abs/1812.06469"}
109
- {name: "Dataset Errata", url: "https://dpupublicdata.blob.core.windows.net/duplicates/errata.zip"}

_publications/allamanis2020typilus.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: "Typilus: Neural Type Hints"
44
authors: Miltiadis Allamanis, Earl T. Barr, Soline Ducousso, Zheng Gao
55
conference: PLDI
66
year: 2020
7-
bibkey: allamanis2020typilus
87
additional_links:
98
- {name: "ArXiV", url: "https://arxiv.org/abs/2004.10657"}
109
- {name: "Dataset", url: "https://github.com/typilus/typilus"}

_publications/allamanis2021self.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: "Self-Supervised Bug Detection and Repair"
44
authors: Miltiadis Allamanis, Henry Jackson-Flux, Marc Brockschmidt
55
conference: NeurIPS
66
year: 2021
7-
bibkey: allamanis2021self
87
additional_links:
98
- {name: "ArXiV", url: "https://arxiv.org/abs/2105.12787"}
109
tags: ["GNN", "Transformer", "defect", "repair"]

_publications/alon2018code2seq.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: "code2seq: Generating Sequences from Structured Representations of Code"
44
authors: Uri Alon, Omer Levy, Eran Yahav
55
conference: ICLR
66
year: 2019
7-
bibkey: alon2018code2seq
87
additional_links:
98
- {name: "ArXiV", url: "https://arxiv.org/abs/1808.01400"}
109
tags: ["naming", "summarization", "representation"]

_publications/alon2018general.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: "A General Path-Based Representation for Predicting Program Properties"
44
authors: Uri Alon, Meital Zilberstein, Omer Levy, Eran Yahav
55
conference: PLDI
66
year: 2018
7-
bibkey: alon2018general
87
additional_links:
98
- {name: "ArXiV", url: "https://arxiv.org/abs/1803.09544"}
109
tags: ["naming", "representation"]

_publications/alon2019code2vec.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: "code2vec: Learning Distributed Representations of Code"
44
authors: Uri Alon, Omer Levy, Eran Yahav
55
conference: POPL
66
year: 2019
7-
bibkey: alon2019code2vec
87
additional_links:
98
- {name: "Code", url: "https://github.com/tech-srl/code2vec"}
109
tags: ["naming", "summarization", "representation"]

_publications/alon2019structural.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: "Structural Language Models for Any-Code Generation"
44
authors: Uri Alon, Roy Sadaka, Omer Levy, Eran Yahav
55
conference:
66
year: 2019
7-
bibkey: alond2019structural
87
additional_links:
98
- {name: "ArXiV", url: "https://arxiv.org/abs/1910.00577"}
109
tags: ["code generation"]

_publications/amodio2017neural.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: "Neural Attribute Machines for Program Generation"
44
authors: Matthew Amodio, Swarat Chaudhuri, Thomas W. Reps
55
conference:
66
year: 2017
7-
bibkey: amodio2017neural
87
tags: ["grammar", "code generation", "representation"]
98
---
109
Recurrent neural networks have achieved remarkable success at generating sequences with complex structures, thanks to advances that include richer embeddings of input and cures for vanishing gradients. Trained only on sequences from a known grammar, though, they can still struggle to learn rules and constraints of the grammar. Neural Attribute Machines (NAMs) are equipped with a logical machine that represents the underlying grammar, which is used to teach the constraints to the neural machine by (i) augmenting the input sequence, and (ii) optimizing a custom loss function. Unlike traditional RNNs, NAMs are exposed to the grammar, as well as samples from the language of the grammar. During generation, NAMs make significantly fewer violations of the constraints of the underlying grammar than RNNs trained only on samples from the language of the grammar.

_publications/arakelyan2020towards.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: "Towards Learning Representations of Binary Executable Files for Security
44
authors: Shushan Arakelyan, Sima Arasteh, Christophe Hauser, Erik Kline, Aram Galstyan
55
conference: AAAI
66
year: 2020
7-
bibkey: arakelyan2020towards
87
additional_links:
98
- {name: "ArXiV", url: "https://arxiv.org/abs/2002.03388"}
109
tags: ["GNN", "representation"]

_publications/ashwath2020predicting.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: Predicting Vulnerability in Large Codebases With Deep Code Representation
44
authors: Anshul Tanwar, Krishna Sundaresan, Parmesh Ashwath, Prasanna Ganesan, Sathish Kumar Chandrasekaran, Sriram Ravi
55
conference:
66
year: 2020
7-
bibkey: ashwath2020predicting
87
additional_links:
98
- {name: "ArXiV", url: "https://arxiv.org/abs/2004.12783"}
109
tags: ["grammar", "program analysis", "static analysis"]

_publications/aye2020learning.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: "Learning Autocompletion from Real-World Datasets"
44
authors: Gareth Ari Aye, Seohyun Kim, Hongyu Li
55
conference:
66
year: 2020
7-
bibkey: aye2020learning
87
additional_links:
98
- {name: "ArXiV", url: "https://arxiv.org/abs/2011.04542"}
109
tags: ["autocomplete"]

_publications/aye2020sequence.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: "Sequence Model Design for Code Completion in the Modern IDE"
44
authors: Gareth Ari Aye, Gail E. Kaiser
55
conference: Optional
66
year: 2020
7-
bibkey: aye2020sequence
87
additional_links:
98
- {name: "ArXiV", url: "https://arxiv.org/abs/2004.05249"}
109
tags: ["autocomplete"]

_publications/bai2021jointly.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: "Jointly Learning to Repair Code and Generate Commit Message"
44
authors: Jiaqi Bai, Long Zhou, Ambrosio Blanco, Shujie Liu, Furu Wei, Ming Zhou, Zhoujun Li
55
conference:
66
year: 2021
7-
bibkey: bai2021jointly
87
additional_links:
98
- {name: "ArXiV", url: "https://arxiv.org/abs/2109.12296"}
109
tags: ["edit", "Transformer"]

_publications/barone2017parallel.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: "A parallel corpus of Python functions and documentation strings for auto
44
authors: Antonio Valerio Miceli Barone, Rico Sennrich
55
conference:
66
year: 2017
7-
bibkey: barone2017parallel
87
additional_links:
98
- {name: "ArXiV", url: "https://arxiv.org/abs/1707.02275"}
109
- {name: "code", url: "https://github.com/EdinburghNLP/code-docstring-corpus"}

_publications/bavishi2017context2name.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: "Context2Name: A Deep Learning-Based Approach to Infer Natural Variable N
44
authors: Rohan Bavishi, Michael Pradel, Koushik Sen
55
conference:
66
year: 2017
7-
bibkey: bavishi2017context2name
87
additional_links:
98
- {name: "ArXiV", url: "https://arxiv.org/abs/1809.05193"}
109
tags: ["naming"]

_publications/bavishi2019autopandas.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: "AutoPandas: neural-backed generators for program synthesis"
44
authors: Rohan Bavishi, Caroline Lemieux, Roy Fox, Koushik Sen, Ion Stoica
55
conference: OOPSLA
66
year: 2019
7-
bibkey: bavishi2019autopandas
87
tags: ["synthesis", "GNN", "API"]
98
---
109
Developers nowadays have to contend with a growing number of APIs. While in the long-term they are very useful to developers, many modern APIs have an incredibly steep learning curve, due to their hundreds of functions handling many arguments, obscure documentation, and frequently changing semantics. For APIs that perform data transformations, novices can often provide an I/O example demonstrating the desired transformation, but may be stuck on how to translate it to the API. A programming-by-example synthesis engine that takes such I/O examples and directly produces programs in the target API could help such novices. Such an engine presents unique challenges due to the breadth of real-world APIs, and the often-complex constraints over function arguments. We present a generator-based synthesis approach to contend with these problems. This approach uses a program candidate generator, which encodes basic constraints on the space of programs. We introduce neural-backed operators which can be seamlessly integrated into the program generator. To improve the efficiency of the search, we simply use these operators at non-deterministic decision points, instead of relying on domain-specific heuristics. We implement this technique for the Python pandas library in AutoPandas. AutoPandas supports 119 pandas dataframe transformation functions. We evaluate AutoPandas on 26 real-world benchmarks and find it solves 17 of them.

_publications/beltramelli2017pix2code.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: "pix2code: Generating Code from a Graphical User Interface Screenshot"
44
authors: Tony Beltramelli
55
conference:
66
year: 2017
7-
bibkey: beltramelli2017pix2code
87
additional_links:
98
- {name: "ArXiV", url: "https://arxiv.org/abs/1705.07962"}
109
tags: ["code generation", "bimodal"]

_publications/bennun2018neural.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: "Neural Code Comprehension: A Learnable Representation of Code Semantics"
44
authors: Tal Ben-Nun, Alice Shoshana Jakobovits, Torsten Hoefler
55
conference: NeurIPS
66
year: 2018
7-
bibkey: bennun2018neural
87
tags: ["representation"]
98
---
109
With the recent success of embeddings in natural language processing, research has been conducted into applying similar methods to code analysis. Most works attempt to process the code directly or use a syntactic tree representation, treating it like sentences written in a natural language. However, none of the existing methods are sufficient to comprehend program semantics robustly, due to structural features such as function calls, branching, and interchangeable order of statements. In this paper, we propose a novel processing technique to learn code semantics, and apply it to a variety of program analysis tasks. In particular, we stipulate that a robust distributional hypothesis of code applies to both human- and machine-generated programs. Following this hypothesis, we define an embedding space, inst2vec, based on an Intermediate Representation (IR) of the code that is independent of the source programming language. We provide a novel definition of contextual flow for this IR, leveraging both the underlying data- and control-flow of the program. We then analyze the embeddings qualitatively using analogies and clustering, and evaluate the learned representation on three different high-level tasks. We show that with a single RNN architecture and pre-trained fixed embeddings, inst2vec outperforms specialized approaches for performance prediction (compute device mapping, optimal thread coarsening); and algorithm classification from raw code (104 classes), where we set a new state-of-the-art.

_publications/berabi2021tfix.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: "TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer"
44
authors: Berkay Berabi, Jingxuan He, Veselin Raychev, Martin Vechev
55
conference: ICML
66
year: 2021
7-
bibkey: berabi2021tfix
87
additional_links:
98
- {name: "Code & Dataset", url: "https://github.com/eth-sri/TFix"}
109
tags: ["repair"]

_publications/bhatia2016automated.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: "Automated Correction for Syntax Errors in Programming Assignments using
44
authors: Sahil Bhatia, Rishabh Singh
55
conference:
66
year: 2016
7-
bibkey: bhatia2016automated
87
additional_links:
98
- {name: "ArXiV", url: "https://arxiv.org/abs/1603.06129"}
109
tags: ["repair"]

_publications/bhatia2018neurosymbolic.markdown

-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ title: "Neuro-symbolic program corrector for introductory programming assignment
44
authors: Sahil Bhatia, Pushmeet Kohli, Rishabh Singh
55
conference: ICSE
66
year: 2018
7-
bibkey: bhatia2018neurosymbolic
87
tags: ["repair"]
98
---
109
Automatic correction of programs is a challenging problem with numerous real world applications in security, verification, and education. One application that is becoming increasingly important is the correction of student submissions in online courses for providing feedback. Most existing program repair techniques analyze Abstract Syntax Trees (ASTs) of programs, which are unfortunately unavailable for programs with syntax errors. In this paper, we propose a novel Neuro-symbolic approach that combines neural networks with constraint-based reasoning. Specifically, our method first uses a Recurrent Neural Network (RNN) to perform syntax repairs for the buggy programs; subsequently, the resulting syntactically-fixed programs are repaired using constraint-based techniques to ensure functional correctness. The RNNs are trained using a corpus of syntactically correct submissions for a given programming assignment, and are then queried to fix syntax errors in an incorrect programming submission by replacing or inserting the predicted tokens at the error location. We evaluate our technique on a dataset comprising of over 14,500 student submissions with syntax errors. Our method is able to repair syntax errors in 60% (8689) of submissions, and finds functionally correct repairs for 23.8% (3455) submissions.

0 commit comments

Comments
 (0)