|
| 1 | +from collections import namedtuple |
| 2 | + |
| 3 | +AssignedJob = namedtuple("AssignedJob", ["worker", "started_at"]) |
| 4 | + |
| 5 | +def leftChild(i, size): |
| 6 | + l = 2 * i + 1 |
| 7 | + return l if l < size else -1 |
| 8 | + |
| 9 | +def rightChild(i, size): |
| 10 | + r = 2 * i + 2 |
| 11 | + return r if r < size else -1 |
| 12 | + |
| 13 | +def IsHigherPriority(minHeap, i, j, size): |
| 14 | + |
| 15 | + if j >= size or j < 0: |
| 16 | + return False |
| 17 | + if i >= size or i < 0: |
| 18 | + return False |
| 19 | + |
| 20 | + if minHeap[i].started_at < minHeap[j].started_at: |
| 21 | + return True |
| 22 | + elif minHeap[i].started_at == minHeap[j].started_at and minHeap[i].worker < minHeap[j].worker: |
| 23 | + return True |
| 24 | + |
| 25 | + return False |
| 26 | + |
| 27 | +# Time Complexity: O(log J) |
| 28 | +# Space Complexity: O(1) |
| 29 | +def siftDown(minHeap, i, size): |
| 30 | + if i >= size: |
| 31 | + return |
| 32 | + |
| 33 | + indexMin = i |
| 34 | + if IsHigherPriority(minHeap, leftChild(i, size), indexMin, size): |
| 35 | + indexMin = leftChild(i, size) |
| 36 | + |
| 37 | + if IsHigherPriority(minHeap, rightChild(i, size), indexMin, size): |
| 38 | + indexMin = rightChild(i, size) |
| 39 | + |
| 40 | + if indexMin != i: |
| 41 | + minHeap[i], minHeap[indexMin] = minHeap[indexMin], minHeap[i] |
| 42 | + siftDown(minHeap, indexMin, size) |
| 43 | + |
| 44 | +# Time Complexity: O(N * log J) |
| 45 | +# Space Complexity: O(J) |
| 46 | +def assign_jobs(n_workers, jobs): |
| 47 | + result = [] |
| 48 | + |
| 49 | + #Build a MinHeap |
| 50 | + minHeapPriority = [AssignedJob(i, 0) for i in range(n_workers) ] # O(n) |
| 51 | + |
| 52 | + for job in jobs: # O(j * log n) |
| 53 | + |
| 54 | + result.append(AssignedJob(minHeapPriority[0].worker, minHeapPriority[0].started_at)) |
| 55 | + minHeapPriority[0] = AssignedJob(minHeapPriority[0].worker, minHeapPriority[0].started_at + job) |
| 56 | + |
| 57 | + # Sift Down the work which started_at time is just changed |
| 58 | + siftDown(minHeapPriority, 0, n_workers) # O(log n) |
| 59 | + |
| 60 | + return result |
| 61 | + |
| 62 | +# Time Complexity: O(N * J) |
| 63 | +# Space Complexity: O(J) |
| 64 | +def assign_jobs_brute(n_workers, jobs): |
| 65 | + result = [] |
| 66 | + next_free_time = [0] * n_workers |
| 67 | + for job in jobs: |
| 68 | + next_worker = min(range(n_workers), key=lambda w: next_free_time[w]) |
| 69 | + result.append(AssignedJob(next_worker, next_free_time[next_worker])) |
| 70 | + next_free_time[next_worker] += job |
| 71 | + |
| 72 | + return result |
| 73 | + |
| 74 | +def main(): |
| 75 | + n_workers, n_jobs = map(int, input().split()) |
| 76 | + jobs = list(map(int, input().split())) |
| 77 | + assert len(jobs) == n_jobs |
| 78 | + |
| 79 | + assigned_jobs = assign_jobs(n_workers, jobs) |
| 80 | + |
| 81 | + for job in assigned_jobs: |
| 82 | + print(job.worker, job.started_at) |
| 83 | + |
| 84 | +if __name__ == "__main__": |
| 85 | + main() |
0 commit comments