1
- .. _header-n359 :
1
+ .. _header-n0 :
2
2
3
3
Release History
4
4
===============
5
5
6
- .. _header-n361 :
6
+ .. figure :: https://user-images.githubusercontent.com/16560492/101267295-c74c0180-375f-11eb-9ad0-f8e37bd796ce.png
7
+ :alt:
8
+
9
+ .. _header-n3 :
7
10
8
11
PyGAD 1.0.17
9
12
------------
@@ -15,7 +18,7 @@ Release Date: 15 April 2020
15
18
values for the solutions. This allows the project to be customized to
16
19
any problem by building the right fitness function.
17
20
18
- .. _header-n366 :
21
+ .. _header-n8 :
19
22
20
23
PyGAD 1.0.20
21
24
-------------
@@ -35,7 +38,7 @@ Release Date: 4 May 2020
35
38
4. The code object ``__code__ `` of the passed fitness function is
36
39
checked to ensure it has the right number of parameters.
37
40
38
- .. _header-n377 :
41
+ .. _header-n19 :
39
42
40
43
PyGAD 2.0.0
41
44
------------
@@ -61,7 +64,7 @@ Release Date: 13 May 2020
61
64
is called after each generation. This helps the user to do
62
65
post-processing or debugging operations after each generation.
63
66
64
- .. _header-n388 :
67
+ .. _header-n30 :
65
68
66
69
PyGAD 2.1.0
67
70
-----------
@@ -97,7 +100,7 @@ Release Date: 14 May 2020
97
100
98
101
2. Mutation is applied independently for the genes.
99
102
100
- .. _header-n403 :
103
+ .. _header-n45 :
101
104
102
105
PyGAD 2.2.1
103
106
-----------
@@ -107,7 +110,7 @@ Release Date: 17 May 2020
107
110
1. Adding 2 extra modules (pygad.nn and pygad.gann) for building and
108
111
training neural networks with the genetic algorithm.
109
112
110
- .. _header-n408 :
113
+ .. _header-n50 :
111
114
112
115
PyGAD 2.2.2
113
116
-----------
@@ -141,7 +144,7 @@ The new gene value is **0.1**.
141
144
``crossover_type `` parameters of the pygad.GA class constructor. When
142
145
``None ``, this means the step is bypassed and has no action.
143
146
144
- .. _header-n421 :
147
+ .. _header-n63 :
145
148
146
149
PyGAD 2.3.0
147
150
-----------
@@ -166,7 +169,7 @@ Release date: 1 June 2020
166
169
6. The name of the ``pygad.nn.train_network() `` function is changed to
167
170
``pygad.nn.train() ``.
168
171
169
- .. _header-n436 :
172
+ .. _header-n78 :
170
173
171
174
PyGAD 2.4.0
172
175
-----------
@@ -204,7 +207,7 @@ through more generations because no further improvement is possible.
204
207
if ga_instance.best_solution()[1 ] >= 70 :
205
208
return " stop"
206
209
207
- .. _header-n446 :
210
+ .. _header-n88 :
208
211
209
212
PyGAD 2.5.0
210
213
-----------
@@ -300,7 +303,7 @@ If the user did not assign the initial population to the
300
303
randomly based on the ``gene_space `` parameter. Moreover, the mutation
301
304
is applied based on this parameter.
302
305
303
- .. _header-n474 :
306
+ .. _header-n116 :
304
307
305
308
PyGAD 2.6.0
306
309
------------
@@ -318,7 +321,7 @@ Release Date: 6 August 2020
318
321
``on_fitness ``, ``on_parents ``, ``on_crossover ``, ``on_mutation ``,
319
322
``on_generation ``, and ``on_stop ``.
320
323
321
- .. _header-n483 :
324
+ .. _header-n125 :
322
325
323
326
PyGAD 2.7.0
324
327
-----------
@@ -377,7 +380,7 @@ parameter or set it to ``"classification"`` (default value). In this
377
380
case, the activation function of the last layer can be set to any type
378
381
(e.g. softmax).
379
382
380
- .. _header-n507 :
383
+ .. _header-n149 :
381
384
382
385
PyGAD 2.7.1
383
386
-----------
@@ -387,7 +390,7 @@ Release Date: 11 September 2020
387
390
1. A bug fix when the ``problem_type `` argument is set to
388
391
``regression ``.
389
392
390
- .. _header-n512 :
393
+ .. _header-n154 :
391
394
392
395
PyGAD 2.7.2
393
396
-----------
@@ -397,7 +400,7 @@ Release Date: 14 September 2020
397
400
1. Bug fix to support building and training regression neural networks
398
401
with multiple outputs.
399
402
400
- .. _header-n517 :
403
+ .. _header-n159 :
401
404
402
405
PyGAD 2.8.0
403
406
-----------
@@ -407,7 +410,7 @@ Release Date: 20 September 2020
407
410
1. Support of a new module named ``kerasga `` so that the Keras models
408
411
can be trained by the genetic algorithm using PyGAD.
409
412
410
- .. _header-n522 :
413
+ .. _header-n164 :
411
414
412
415
PyGAD 2.8.1
413
416
-----------
@@ -420,7 +423,7 @@ Release Date: 3 October 2020
420
423
Management, Faculty of Engineering, Alexandria University,
421
424
Egypt <https://www.linkedin.com/in/hamadakassem> `__.
422
425
423
- .. _header-n527 :
426
+ .. _header-n169 :
424
427
425
428
PyGAD 2.9.0
426
429
------------
@@ -448,7 +451,7 @@ Release Date: 06 December 2020
448
451
``numpy.int64 ``, ``numpy.float ``, ``numpy.float16 ``,
449
452
``numpy.float32 ``, or ``numpy.float64 ``.
450
453
451
- .. _header-n540 :
454
+ .. _header-n182 :
452
455
453
456
PyGAD 2.10.0
454
457
------------
@@ -509,7 +512,7 @@ Release Date: 03 January 2021
509
512
``cal_pop_fitness() `` method is called to calculate the fitness
510
513
values of the population.
511
514
512
- .. _header-n565 :
515
+ .. _header-n207 :
513
516
514
517
PyGAD 2.10.1
515
518
------------
@@ -541,7 +544,7 @@ Release Date: 10 January 2021
541
544
pointing about that at
542
545
`GitHub <https://github.com/ahmedfgad/KerasGA/issues/1 >`__.
543
546
544
- .. _header-n721 :
547
+ .. _header-n218 :
545
548
546
549
PyGAD 2.10.2
547
550
------------
@@ -552,7 +555,40 @@ Release Date: 15 January 2021
552
555
more information:
553
556
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/25
554
557
555
- .. _header-n720 :
558
+ .. _header-n223 :
559
+
560
+ PyGAD 2.11.0
561
+ ------------
562
+
563
+ Release Date: 16 February 2021
564
+
565
+ 1. In the ``gene_space `` argument, the user can use a dictionary to
566
+ specify the lower and upper limits of the gene. This dictionary must
567
+ have only 2 items with keys ``low `` and ``high `` to specify the low
568
+ and high limits of the gene, respectively. This way, PyGAD takes care
569
+ of not exceeding the value limits of the gene. For a problem with
570
+ only 2 genes, then using
571
+ ``gene_space=[{'low': 1, 'high': 5}, {'low': 0.2, 'high': 0.81}] ``
572
+ means the accepted values in the first gene start from 1 (inclusive)
573
+ to 5 (exclusive) while the second one has values between 0.2
574
+ (inclusive) and 0.85 (exclusive). For more information, please check
575
+ the `Limit the Gene Value
576
+ Range <https://pygad.readthedocs.io/en/latest/README_pygad_ReadTheDocs.html#limit-the-gene-value-range> `__
577
+ section of the documentation.
578
+
579
+ 2. The ``plot_result() `` method returns the figure so that the user can
580
+ save it.
581
+
582
+ 3. Bug fixes in copying elements from the gene space.
583
+
584
+ 4. For a gene with a set of discrete values (more than 1 value) in the
585
+ ``gene_space `` parameter like ``[0, 1] ``, it was possible that the
586
+ gene value may not change after mutation. That is if the current
587
+ value is 0, then the randomly selected value could also be 0. Now, it
588
+ is verified that the new value is changed. So, if the current value
589
+ is 0, then the new value after mutation will not be 0 but 1.
590
+
591
+ .. _header-n234 :
556
592
557
593
PyGAD Projects at GitHub
558
594
========================
@@ -562,7 +598,7 @@ https://pypi.org/project/pygad. PyGAD is built out of a number of
562
598
open-source GitHub projects. A brief note about these projects is given
563
599
in the next subsections.
564
600
565
- .. _header-n578 :
601
+ .. _header-n236 :
566
602
567
603
`GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython >`__
568
604
--------------------------------------------------------------------------------
@@ -573,7 +609,7 @@ GitHub Link: https://github.com/ahmedfgad/GeneticAlgorithmPython
573
609
is the first project which is an open-source Python 3 project for
574
610
implementing the genetic algorithm based on NumPy.
575
611
576
- .. _header-n581 :
612
+ .. _header-n239 :
577
613
578
614
`NumPyANN <https://github.com/ahmedfgad/NumPyANN >`__
579
615
----------------------------------------------------
@@ -587,7 +623,7 @@ neural network without using a training algorithm. Currently, it only
587
623
supports classification and later regression will be also supported.
588
624
Moreover, only one class is supported per sample.
589
625
590
- .. _header-n584 :
626
+ .. _header-n242 :
591
627
592
628
`NeuralGenetic <https://github.com/ahmedfgad/NeuralGenetic >`__
593
629
--------------------------------------------------------------
@@ -600,7 +636,7 @@ projects
600
636
`GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython >`__
601
637
and `NumPyANN <https://github.com/ahmedfgad/NumPyANN >`__.
602
638
603
- .. _header-n587 :
639
+ .. _header-n245 :
604
640
605
641
`NumPyCNN <https://github.com/ahmedfgad/NumPyCNN >`__
606
642
----------------------------------------------------
@@ -612,7 +648,7 @@ convolutional neural networks using NumPy. The purpose of this project
612
648
is to only implement the **forward pass ** of a convolutional neural
613
649
network without using a training algorithm.
614
650
615
- .. _header-n590 :
651
+ .. _header-n248 :
616
652
617
653
`CNNGenetic <https://github.com/ahmedfgad/CNNGenetic >`__
618
654
--------------------------------------------------------
@@ -624,7 +660,7 @@ convolutional neural networks using the genetic algorithm. It uses the
624
660
`GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython >`__
625
661
project for building the genetic algorithm.
626
662
627
- .. _header-n593 :
663
+ .. _header-n251 :
628
664
629
665
`KerasGA <https://github.com/ahmedfgad/KerasGA >`__
630
666
--------------------------------------------------
637
673
`GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython >`__
638
674
project for building the genetic algorithm.
639
675
640
- .. _header-n596 :
676
+ .. _header-n254 :
641
677
642
678
`TorchGA <https://github.com/ahmedfgad/TorchGA >`__
643
679
--------------------------------------------------
@@ -653,7 +689,7 @@ project for building the genetic algorithm.
653
689
`pygad.torchga <https://github.com/ahmedfgad/TorchGA >`__:
654
690
https://github.com/ahmedfgad/TorchGA
655
691
656
- .. _header-n600 :
692
+ .. _header-n258 :
657
693
658
694
Submitting Issues
659
695
=================
@@ -670,7 +706,7 @@ is not working properly or to ask for questions.
670
706
If this is not a proper option for you, then check the **Contact Us **
671
707
section for more contact details.
672
708
673
- .. _header-n604 :
709
+ .. _header-n262 :
674
710
675
711
Ask for Feature
676
712
===============
687
723
688
724
Also check the **Contact Us ** section for more contact details.
689
725
690
- .. _header-n608 :
726
+ .. _header-n266 :
691
727
692
728
Projects Built using PyGAD
693
729
==========================
@@ -706,15 +742,15 @@ Within your message, please send the following details:
706
742
707
743
- Preferably, a link that directs the readers to your project
708
744
709
- .. _header-n619 :
745
+ .. _header-n277 :
710
746
711
747
For More Information
712
748
====================
713
749
714
750
There are different resources that can be used to get started with the
715
751
genetic algorithm and building it in Python.
716
752
717
- .. _header-n621 :
753
+ .. _header-n279 :
718
754
719
755
Tutorial: Implementing Genetic Algorithm in Python
720
756
--------------------------------------------------
@@ -738,7 +774,7 @@ good resource to start with coding the genetic algorithm.
738
774
739
775
|image0 |
740
776
741
- .. _header-n632 :
777
+ .. _header-n290 :
742
778
743
779
Tutorial: Introduction to Genetic Algorithm
744
780
-------------------------------------------
@@ -757,7 +793,7 @@ which is available at these links:
757
793
758
794
|image1 |
759
795
760
- .. _header-n642 :
796
+ .. _header-n300 :
761
797
762
798
Tutorial: Build Neural Networks in Python
763
799
-----------------------------------------
@@ -777,7 +813,7 @@ available at these links:
777
813
778
814
|image2 |
779
815
780
- .. _header-n652 :
816
+ .. _header-n310 :
781
817
782
818
Tutorial: Optimize Neural Networks with Genetic Algorithm
783
819
---------------------------------------------------------
@@ -797,7 +833,7 @@ available at these links:
797
833
798
834
|image3 |
799
835
800
- .. _header-n662 :
836
+ .. _header-n320 :
801
837
802
838
Tutorial: Building CNN in Python
803
839
--------------------------------
@@ -823,7 +859,7 @@ good resource to start with coding CNNs.
823
859
824
860
|image4 |
825
861
826
- .. _header-n675 :
862
+ .. _header-n333 :
827
863
828
864
Tutorial: Derivation of CNN from FCNN
829
865
-------------------------------------
@@ -842,7 +878,7 @@ which is available at these links:
842
878
843
879
|image5 |
844
880
845
- .. _header-n685 :
881
+ .. _header-n343 :
846
882
847
883
Book: Practical Computer Vision Applications Using Deep Learning with CNNs
848
884
--------------------------------------------------------------------------
@@ -868,7 +904,7 @@ Find the book at these links:
868
904
.. figure :: https://user-images.githubusercontent.com/16560492/78830077-ae7c2800-79e7-11ea-980b-53b6bd879eeb.jpg
869
905
:alt:
870
906
871
- .. _header-n700 :
907
+ .. _header-n358 :
872
908
873
909
Contact Us
874
910
==========
@@ -889,6 +925,9 @@ Contact Us
889
925
890
926
- `GitHub <https://github.com/ahmedfgad >`__
891
927
928
+ .. figure :: https://user-images.githubusercontent.com/16560492/101267295-c74c0180-375f-11eb-9ad0-f8e37bd796ce.png
929
+ :alt:
930
+
892
931
.. |image0 | image :: https://user-images.githubusercontent.com/16560492/78830052-a3c19300-79e7-11ea-8b9b-4b343ea4049c.png
893
932
:target: https://www.linkedin.com/pulse/genetic-algorithm-implementation-python-ahmed-gad
894
933
.. |image1 | image :: https://user-images.githubusercontent.com/16560492/82078259-26252d00-96e1-11ea-9a02-52a99e1054b9.jpg
0 commit comments