1
- .. _header-n0 :
1
+ .. _header-n348 :
2
2
3
3
Release History
4
4
===============
5
5
6
- .. _header-n2 :
6
+ .. _header-n350 :
7
7
8
8
PyGAD 1.0.17
9
9
------------
@@ -15,7 +15,7 @@ Release Date: 15 April 2020
15
15
values for the solutions. This allows the project to be customized to
16
16
any problem by building the right fitness function.
17
17
18
- .. _header-n7 :
18
+ .. _header-n355 :
19
19
20
20
PyGAD 1.0.20
21
21
-------------
@@ -35,7 +35,7 @@ Release Date: 4 May 2020
35
35
4. The code object ``__code__ `` of the passed fitness function is
36
36
checked to ensure it has the right number of parameters.
37
37
38
- .. _header-n18 :
38
+ .. _header-n366 :
39
39
40
40
PyGAD 2.0.0
41
41
------------
@@ -61,7 +61,7 @@ Release Date: 13 May 2020
61
61
is called after each generation. This helps the user to do
62
62
post-processing or debugging operations after each generation.
63
63
64
- .. _header-n29 :
64
+ .. _header-n377 :
65
65
66
66
PyGAD 2.1.0
67
67
-----------
@@ -97,7 +97,7 @@ Release Date: 14 May 2020
97
97
98
98
2. Mutation is applied independently for the genes.
99
99
100
- .. _header-n44 :
100
+ .. _header-n392 :
101
101
102
102
PyGAD 2.2.1
103
103
-----------
@@ -107,7 +107,7 @@ Release Date: 17 May 2020
107
107
1. Adding 2 extra modules (pygad.nn and pygad.gann) for building and
108
108
training neural networks with the genetic algorithm.
109
109
110
- .. _header-n49 :
110
+ .. _header-n397 :
111
111
112
112
PyGAD 2.2.2
113
113
-----------
@@ -141,7 +141,7 @@ The new gene value is **0.1**.
141
141
``crossover_type `` parameters of the pygad.GA class constructor. When
142
142
``None ``, this means the step is bypassed and has no action.
143
143
144
- .. _header-n62 :
144
+ .. _header-n410 :
145
145
146
146
PyGAD 2.3.0
147
147
-----------
@@ -166,7 +166,7 @@ Release date: 1 June 2020
166
166
6. The name of the ``pygad.nn.train_network() `` function is changed to
167
167
``pygad.nn.train() ``.
168
168
169
- .. _header-n77 :
169
+ .. _header-n425 :
170
170
171
171
PyGAD 2.4.0
172
172
-----------
@@ -204,7 +204,7 @@ through more generations because no further improvement is possible.
204
204
if ga_instance.best_solution()[1 ] >= 70 :
205
205
return " stop"
206
206
207
- .. _header-n87 :
207
+ .. _header-n435 :
208
208
209
209
PyGAD 2.5.0
210
210
-----------
@@ -300,7 +300,7 @@ If the user did not assign the initial population to the
300
300
randomly based on the ``gene_space `` parameter. Moreover, the mutation
301
301
is applied based on this parameter.
302
302
303
- .. _header-n115 :
303
+ .. _header-n463 :
304
304
305
305
PyGAD 2.6.0
306
306
------------
@@ -318,7 +318,7 @@ Release Date: 6 August 2020
318
318
``on_fitness ``, ``on_parents ``, ``on_crossover ``, ``on_mutation ``,
319
319
``on_generation ``, and ``on_stop ``.
320
320
321
- .. _header-n124 :
321
+ .. _header-n472 :
322
322
323
323
PyGAD 2.7.0
324
324
-----------
@@ -377,7 +377,7 @@ parameter or set it to ``"classification"`` (default value). In this
377
377
case, the activation function of the last layer can be set to any type
378
378
(e.g. softmax).
379
379
380
- .. _header-n148 :
380
+ .. _header-n496 :
381
381
382
382
PyGAD 2.7.1
383
383
-----------
@@ -387,7 +387,7 @@ Release Date: 11 September 2020
387
387
1. A bug fix when the ``problem_type `` argument is set to
388
388
``regression ``.
389
389
390
- .. _header-n153 :
390
+ .. _header-n501 :
391
391
392
392
PyGAD 2.7.2
393
393
-----------
@@ -397,7 +397,7 @@ Release Date: 14 September 2020
397
397
1. Bug fix to support building and training regression neural networks
398
398
with multiple outputs.
399
399
400
- .. _header-n158 :
400
+ .. _header-n506 :
401
401
402
402
PyGAD 2.8.0
403
403
-----------
@@ -407,7 +407,7 @@ Release Date: 20 September 2020
407
407
1. Support of a new module named ``kerasga `` so that the Keras models
408
408
can be trained by the genetic algorithm using PyGAD.
409
409
410
- .. _header-n163 :
410
+ .. _header-n511 :
411
411
412
412
PyGAD 2.8.1
413
413
-----------
@@ -420,7 +420,7 @@ Release Date: 3 October 2020
420
420
Management, Faculty of Engineering, Alexandria University,
421
421
Egypt <https://www.linkedin.com/in/hamadakassem> `__.
422
422
423
- .. _header-n168 :
423
+ .. _header-n516 :
424
424
425
425
PyGAD 2.9.0
426
426
------------
@@ -448,7 +448,7 @@ Release Date: 06 December 2020
448
448
``numpy.int64 ``, ``numpy.float ``, ``numpy.float16 ``,
449
449
``numpy.float32 ``, or ``numpy.float64 ``.
450
450
451
- .. _header-n181 :
451
+ .. _header-n529 :
452
452
453
453
PyGAD 2.10.0
454
454
------------
@@ -503,7 +503,13 @@ Release Date: 03 January 2021
503
503
created to calculate the average fitness value used in adaptive
504
504
mutation to filter the solutions.
505
505
506
- .. _header-n202 :
506
+ 11. The ``best_solution() `` method accepts a new optional parameter
507
+ called ``pop_fitness ``. It accepts a list of the fitness values of
508
+ the solutions in the population. If ``None ``, then the
509
+ ``cal_pop_fitness() `` method is called to calculate the fitness
510
+ values of the population.
511
+
512
+ .. _header-n554 :
507
513
508
514
PyGAD Projects at GitHub
509
515
========================
@@ -513,7 +519,7 @@ https://pypi.org/project/pygad. PyGAD is built out of a number of
513
519
open-source GitHub projects. A brief note about these projects is given
514
520
in the next subsections.
515
521
516
- .. _header-n204 :
522
+ .. _header-n556 :
517
523
518
524
`GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython >`__
519
525
--------------------------------------------------------------------------------
@@ -524,7 +530,7 @@ GitHub Link: https://github.com/ahmedfgad/GeneticAlgorithmPython
524
530
is the first project which is an open-source Python 3 project for
525
531
implementing the genetic algorithm based on NumPy.
526
532
527
- .. _header-n207 :
533
+ .. _header-n559 :
528
534
529
535
`NumPyANN <https://github.com/ahmedfgad/NumPyANN >`__
530
536
----------------------------------------------------
@@ -538,7 +544,7 @@ neural network without using a training algorithm. Currently, it only
538
544
supports classification and later regression will be also supported.
539
545
Moreover, only one class is supported per sample.
540
546
541
- .. _header-n210 :
547
+ .. _header-n562 :
542
548
543
549
`NeuralGenetic <https://github.com/ahmedfgad/NeuralGenetic >`__
544
550
--------------------------------------------------------------
@@ -551,7 +557,7 @@ projects
551
557
`GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython >`__
552
558
and `NumPyANN <https://github.com/ahmedfgad/NumPyANN >`__.
553
559
554
- .. _header-n213 :
560
+ .. _header-n565 :
555
561
556
562
`NumPyCNN <https://github.com/ahmedfgad/NumPyCNN >`__
557
563
----------------------------------------------------
@@ -563,7 +569,7 @@ convolutional neural networks using NumPy. The purpose of this project
563
569
is to only implement the **forward pass ** of a convolutional neural
564
570
network without using a training algorithm.
565
571
566
- .. _header-n216 :
572
+ .. _header-n568 :
567
573
568
574
`CNNGenetic <https://github.com/ahmedfgad/CNNGenetic >`__
569
575
--------------------------------------------------------
@@ -575,7 +581,7 @@ convolutional neural networks using the genetic algorithm. It uses the
575
581
`GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython >`__
576
582
project for building the genetic algorithm.
577
583
578
- .. _header-n219 :
584
+ .. _header-n571 :
579
585
580
586
`KerasGA <https://github.com/ahmedfgad/KerasGA >`__
581
587
--------------------------------------------------
588
594
`GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython >`__
589
595
project for building the genetic algorithm.
590
596
591
- .. _header-n222 :
597
+ .. _header-n574 :
592
598
593
599
`TorchGA <https://github.com/ahmedfgad/TorchGA >`__
594
600
--------------------------------------------------
@@ -604,7 +610,7 @@ project for building the genetic algorithm.
604
610
`pygad.torchga <https://github.com/ahmedfgad/TorchGA >`__:
605
611
https://github.com/ahmedfgad/TorchGA
606
612
607
- .. _header-n226 :
613
+ .. _header-n578 :
608
614
609
615
Submitting Issues
610
616
=================
@@ -621,7 +627,7 @@ is not working properly or to ask for questions.
621
627
If this is not a proper option for you, then check the **Contact Us **
622
628
section for more contact details.
623
629
624
- .. _header-n230 :
630
+ .. _header-n582 :
625
631
626
632
Ask for Feature
627
633
===============
638
644
639
645
Also check the **Contact Us ** section for more contact details.
640
646
641
- .. _header-n234 :
647
+ .. _header-n586 :
642
648
643
649
Projects Built using PyGAD
644
650
==========================
@@ -657,15 +663,15 @@ Within your message, please send the following details:
657
663
658
664
- Preferably, a link that directs the readers to your project
659
665
660
- .. _header-n245 :
666
+ .. _header-n597 :
661
667
662
668
For More Information
663
669
====================
664
670
665
671
There are different resources that can be used to get started with the
666
672
genetic algorithm and building it in Python.
667
673
668
- .. _header-n247 :
674
+ .. _header-n599 :
669
675
670
676
Tutorial: Implementing Genetic Algorithm in Python
671
677
--------------------------------------------------
@@ -689,7 +695,7 @@ good resource to start with coding the genetic algorithm.
689
695
690
696
|image0 |
691
697
692
- .. _header-n258 :
698
+ .. _header-n610 :
693
699
694
700
Tutorial: Introduction to Genetic Algorithm
695
701
-------------------------------------------
@@ -708,7 +714,7 @@ which is available at these links:
708
714
709
715
|image1 |
710
716
711
- .. _header-n268 :
717
+ .. _header-n620 :
712
718
713
719
Tutorial: Build Neural Networks in Python
714
720
-----------------------------------------
@@ -728,7 +734,7 @@ available at these links:
728
734
729
735
|image2 |
730
736
731
- .. _header-n278 :
737
+ .. _header-n630 :
732
738
733
739
Tutorial: Optimize Neural Networks with Genetic Algorithm
734
740
---------------------------------------------------------
@@ -748,7 +754,7 @@ available at these links:
748
754
749
755
|image3 |
750
756
751
- .. _header-n288 :
757
+ .. _header-n640 :
752
758
753
759
Tutorial: Building CNN in Python
754
760
--------------------------------
@@ -774,7 +780,7 @@ good resource to start with coding CNNs.
774
780
775
781
|image4 |
776
782
777
- .. _header-n301 :
783
+ .. _header-n653 :
778
784
779
785
Tutorial: Derivation of CNN from FCNN
780
786
-------------------------------------
@@ -793,7 +799,7 @@ which is available at these links:
793
799
794
800
|image5 |
795
801
796
- .. _header-n311 :
802
+ .. _header-n663 :
797
803
798
804
Book: Practical Computer Vision Applications Using Deep Learning with CNNs
799
805
--------------------------------------------------------------------------
@@ -819,7 +825,7 @@ Find the book at these links:
819
825
.. figure :: https://user-images.githubusercontent.com/16560492/78830077-ae7c2800-79e7-11ea-980b-53b6bd879eeb.jpg
820
826
:alt:
821
827
822
- .. _header-n326 :
828
+ .. _header-n678 :
823
829
824
830
Contact Us
825
831
==========
0 commit comments