You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Changes in PyGAD 2.9.0 (06 December 2020):
1. The fitness values of the initial population are considered in the `best_solutions_fitness` attribute.
2. An optional parameter named `save_best_solutions` is added. It defaults to `False`. When it is `True`, then the best solution after each generation is saved into an attribute named `best_solutions`. If `False`, then no solutions are saved and the `best_solutions` attribute will be empty.
3. Scattered crossover is supported. To use it, assign the `crossover_type` parameter the value `"scattered"`.
4. NumPy arrays are now supported by the `gene_space` parameter.
5. The following parameters (`gene_type`, `crossover_probability`, `mutation_probability`, `delay_after_gen`) can be assigned to a numeric value of any of these data types: `int`, `float`, `numpy.int`, `numpy.int8`, `numpy.int16`, `numpy.int32`, `numpy.int64`, `numpy.float`, `numpy.float16`, `numpy.float32`, or `numpy.float64`.
0 commit comments