|
| 1 | +import pygad |
| 2 | + |
| 3 | +num_generations = 100 |
| 4 | + |
| 5 | +def number_lifecycle_callback_functions_calls(stop_criteria=None, |
| 6 | + on_generation_stop=None): |
| 7 | + actual_num_callbacks_calls = 0 |
| 8 | + |
| 9 | + def fitness_func(ga_instanse, solution, solution_idx): |
| 10 | + return 1 |
| 11 | + |
| 12 | + def on_start(ga_instance): |
| 13 | + nonlocal actual_num_callbacks_calls |
| 14 | + actual_num_callbacks_calls = actual_num_callbacks_calls + 1 |
| 15 | + |
| 16 | + def on_fitness(ga_instance, population_fitness): |
| 17 | + nonlocal actual_num_callbacks_calls |
| 18 | + actual_num_callbacks_calls = actual_num_callbacks_calls + 1 |
| 19 | + |
| 20 | + def on_parents(ga_instance, selected_parents): |
| 21 | + nonlocal actual_num_callbacks_calls |
| 22 | + actual_num_callbacks_calls = actual_num_callbacks_calls + 1 |
| 23 | + |
| 24 | + def on_crossover(ga_instance, offspring_crossover): |
| 25 | + nonlocal actual_num_callbacks_calls |
| 26 | + actual_num_callbacks_calls = actual_num_callbacks_calls + 1 |
| 27 | + |
| 28 | + def on_mutation(ga_instance, offspring_mutation): |
| 29 | + nonlocal actual_num_callbacks_calls |
| 30 | + actual_num_callbacks_calls = actual_num_callbacks_calls + 1 |
| 31 | + |
| 32 | + def on_generation(ga_instance): |
| 33 | + nonlocal actual_num_callbacks_calls |
| 34 | + actual_num_callbacks_calls = actual_num_callbacks_calls + 1 |
| 35 | + |
| 36 | + if on_generation_stop: |
| 37 | + if ga_instance.generations_completed == on_generation_stop: |
| 38 | + return "stop" |
| 39 | + |
| 40 | + def on_stop(ga_instance, last_population_fitness): |
| 41 | + nonlocal actual_num_callbacks_calls |
| 42 | + actual_num_callbacks_calls = actual_num_callbacks_calls + 1 |
| 43 | + |
| 44 | + ga_instance = pygad.GA(num_generations=num_generations, |
| 45 | + num_parents_mating=5, |
| 46 | + fitness_func=fitness_func, |
| 47 | + sol_per_pop=10, |
| 48 | + num_genes=5, |
| 49 | + on_start=on_start, |
| 50 | + on_fitness=on_fitness, |
| 51 | + on_parents=on_parents, |
| 52 | + on_crossover=on_crossover, |
| 53 | + on_mutation=on_mutation, |
| 54 | + on_generation=on_generation, |
| 55 | + on_stop=on_stop, |
| 56 | + stop_criteria=stop_criteria, |
| 57 | + suppress_warnings=True) |
| 58 | + |
| 59 | + ga_instance.run() |
| 60 | + |
| 61 | + # The total number is: |
| 62 | + # 1 [for on_start()] + |
| 63 | + # num_generations [for on_fitness()] + |
| 64 | + # num_generations [for on_parents()] + |
| 65 | + # num_generations [for on_crossover()] + |
| 66 | + # num_generations [for on_mutation()] + |
| 67 | + # num_generations [for on_generation()] + |
| 68 | + # 1 [for on_stop()] |
| 69 | + # = 1 + num_generations * 5 + 1 |
| 70 | + |
| 71 | + # Use 'generations_completed' instead of 'num_generations' because the evolution may stops in the on_generation() callback. |
| 72 | + expected_num_callbacks_calls = 1 + ga_instance.generations_completed * 5 + 1 |
| 73 | + |
| 74 | + print("Expected number of callbacks calls is {expected_num_callbacks_calls}.".format(expected_num_callbacks_calls=expected_num_callbacks_calls)) |
| 75 | + print("Actual number of callbacks calls is {actual_num_callbacks_calls}.".format(actual_num_callbacks_calls=actual_num_callbacks_calls)) |
| 76 | + return actual_num_callbacks_calls, expected_num_callbacks_calls |
| 77 | + |
| 78 | +def number_lifecycle_callback_methods_calls(stop_criteria=None, |
| 79 | + on_generation_stop=None): |
| 80 | + actual_num_callbacks_calls = 0 |
| 81 | + |
| 82 | + class Callbacks: |
| 83 | + def fitness_func(self, ga_instanse, solution, solution_idx): |
| 84 | + return 1 |
| 85 | + |
| 86 | + def on_start(self, ga_instance): |
| 87 | + nonlocal actual_num_callbacks_calls |
| 88 | + actual_num_callbacks_calls = actual_num_callbacks_calls + 1 |
| 89 | + |
| 90 | + def on_fitness(self, ga_instance, population_fitness): |
| 91 | + nonlocal actual_num_callbacks_calls |
| 92 | + actual_num_callbacks_calls = actual_num_callbacks_calls + 1 |
| 93 | + |
| 94 | + def on_parents(self, ga_instance, selected_parents): |
| 95 | + nonlocal actual_num_callbacks_calls |
| 96 | + actual_num_callbacks_calls = actual_num_callbacks_calls + 1 |
| 97 | + |
| 98 | + def on_crossover(self, ga_instance, offspring_crossover): |
| 99 | + nonlocal actual_num_callbacks_calls |
| 100 | + actual_num_callbacks_calls = actual_num_callbacks_calls + 1 |
| 101 | + |
| 102 | + def on_mutation(self, ga_instance, offspring_mutation): |
| 103 | + nonlocal actual_num_callbacks_calls |
| 104 | + actual_num_callbacks_calls = actual_num_callbacks_calls + 1 |
| 105 | + |
| 106 | + def on_generation(self, ga_instance): |
| 107 | + nonlocal actual_num_callbacks_calls |
| 108 | + actual_num_callbacks_calls = actual_num_callbacks_calls + 1 |
| 109 | + |
| 110 | + if on_generation_stop: |
| 111 | + if ga_instance.generations_completed == on_generation_stop: |
| 112 | + return "stop" |
| 113 | + |
| 114 | + def on_stop(self, ga_instance, last_population_fitness): |
| 115 | + nonlocal actual_num_callbacks_calls |
| 116 | + actual_num_callbacks_calls = actual_num_callbacks_calls + 1 |
| 117 | + |
| 118 | + Callbacks_obj = Callbacks() |
| 119 | + ga_instance = pygad.GA(num_generations=num_generations, |
| 120 | + num_parents_mating=5, |
| 121 | + fitness_func=Callbacks_obj.fitness_func, |
| 122 | + sol_per_pop=10, |
| 123 | + num_genes=5, |
| 124 | + on_start=Callbacks_obj.on_start, |
| 125 | + on_fitness=Callbacks_obj.on_fitness, |
| 126 | + on_parents=Callbacks_obj.on_parents, |
| 127 | + on_crossover=Callbacks_obj.on_crossover, |
| 128 | + on_mutation=Callbacks_obj.on_mutation, |
| 129 | + on_generation=Callbacks_obj.on_generation, |
| 130 | + on_stop=Callbacks_obj.on_stop, |
| 131 | + stop_criteria=stop_criteria, |
| 132 | + suppress_warnings=True) |
| 133 | + |
| 134 | + ga_instance.run() |
| 135 | + |
| 136 | + # The total number is: |
| 137 | + # 1 [for on_start()] + |
| 138 | + # num_generations [for on_fitness()] + |
| 139 | + # num_generations [for on_parents()] + |
| 140 | + # num_generations [for on_crossover()] + |
| 141 | + # num_generations [for on_mutation()] + |
| 142 | + # num_generations [for on_generation()] + |
| 143 | + # 1 [for on_stop()] |
| 144 | + # = 1 + num_generations * 5 + 1 |
| 145 | + |
| 146 | + # Use 'generations_completed' instead of 'num_generations' because the evolution may stops in the on_generation() callback. |
| 147 | + expected_num_callbacks_calls = 1 + ga_instance.generations_completed * 5 + 1 |
| 148 | + |
| 149 | + print("Expected number of callbacks calls is {expected_num_callbacks_calls}.".format(expected_num_callbacks_calls=expected_num_callbacks_calls)) |
| 150 | + print("Actual number of callbacks calls is {actual_num_callbacks_calls}.".format(actual_num_callbacks_calls=actual_num_callbacks_calls)) |
| 151 | + return actual_num_callbacks_calls, expected_num_callbacks_calls |
| 152 | + |
| 153 | +def test_number_lifecycle_callback_functions_calls(): |
| 154 | + actual, expected = number_lifecycle_callback_functions_calls() |
| 155 | + |
| 156 | + assert actual == expected |
| 157 | + |
| 158 | +def test_number_lifecycle_callback_functions_calls_stop_criteria(): |
| 159 | + actual, expected = number_lifecycle_callback_functions_calls(on_generation_stop=30) |
| 160 | + |
| 161 | + assert actual == expected |
| 162 | + |
| 163 | +def test_number_lifecycle_callback_methods_calls(): |
| 164 | + actual, expected = number_lifecycle_callback_methods_calls() |
| 165 | + |
| 166 | + assert actual == expected |
| 167 | + |
| 168 | +def test_number_lifecycle_callback_methods_calls_stop_criteria(): |
| 169 | + actual, expected = number_lifecycle_callback_methods_calls(on_generation_stop=30) |
| 170 | + |
| 171 | + assert actual == expected |
| 172 | + |
| 173 | +if __name__ == "__main__": |
| 174 | + print() |
| 175 | + test_number_lifecycle_callback_functions_calls() |
| 176 | + print() |
| 177 | + test_number_lifecycle_callback_functions_calls_stop_criteria() |
| 178 | + print() |
| 179 | + test_number_lifecycle_callback_methods_calls() |
| 180 | + print() |
| 181 | + test_number_lifecycle_callback_methods_calls_stop_criteria() |
| 182 | + print() |
0 commit comments