Skip to content

Commit ce0314d

Browse files
Tom's Feb 4 edits of pv.md lecture in intro series -- corrected answers to exercise 4
1 parent 8befe06 commit ce0314d

File tree

1 file changed

+9
-7
lines changed

1 file changed

+9
-7
lines changed

lectures/pv.md

+9-7
Original file line numberDiff line numberDiff line change
@@ -454,11 +454,11 @@ $$
454454
:label: pv_ex_a
455455
```
456456
457-
Give analytical expressions for an asset price $p_t$ under the
457+
Assume that $g >1$ and that $\delta g \in (0,1)$. Give analytical expressions for an asset price $p_t$ under the
458458
following settings for $d$ and $p_{T+1}^*$:
459459
460460
1. $p_{T+1}^* = 0, d_t = g^t d_0$ (a modified version of the Gordon growth formula)
461-
1. $p_{T+1}^* = g^{T+1} d_0, d_t = g^t d_0$ (the plain vanilla Gordon growth formula)
461+
1. $p_{T+1}^* = \frac{g^{T+1} d_0}{1- \delta g}, d_t = g^t d_0$ (the plain vanilla Gordon growth formula)
462462
1. $p_{T+1}^* = 0, d_t = 0$ (price of a worthless stock)
463463
1. $p_{T+1}^* = c \delta^{-(T+1)}, d_t = 0$ (price of a pure bubble stock)
464464
@@ -470,12 +470,14 @@ following settings for $d$ and $p_{T+1}^*$:
470470
:class: dropdown
471471
```
472472
473-
Plugging each pair of the above $p_{T+1}^*, d_t$ into Equation {eq}`eq:ptpveq` yields:
473+
Plugging each of the above $p_{T+1}^*, d_t$ pairs into Equation {eq}`eq:ptpveq` yields:
474474
475-
1. $p_t = \sum^T_{s=t} \delta^{s-t} g^s d_0$
476-
1. $p_t = \sum^T_{s=t} \delta^{s-t} g^s d_0 + \delta^{T+1-t} g^{T+1} d_0$
477-
1. $p_t = 0$
478-
1. $p_t = c \delta^{-t}$
475+
1. $ p_t = \sum^T_{s=t} \delta^{s-t} g^s d_0 = d_t \frac{1 - (\delta g)^{T+1-t}}{1 - \delta g}$
476+
477+
478+
2. $p_t = \sum^T_{s=t} \delta^{s-t} g^s d_0 + \frac{\delta^{T+1-t} g^{T+1} d_0}{1 - \delta g} = \frac{d_t}{1 - \delta g}$
479+
3. $p_t = 0$
480+
4. $p_t = c \delta^{-t}$
479481
480482
481483
```{solution-end}

0 commit comments

Comments
 (0)