5
5
from xgboost import XGBRegressor
6
6
7
7
8
- def dataset (datatype :dict ) -> tuple :
8
+ def dataset (datatype : dict ) -> tuple :
9
9
# Split dataset into train and test data
10
- x = (datatype ["data" ],datatype ["target" ]) # features
10
+ x = (datatype ["data" ], datatype ["target" ]) # features
11
11
return x
12
12
13
13
14
- def xgboost (features :list , target :list ,test_features :list ) -> list :
14
+ def xgboost (features : list , target : list , test_features : list ) -> list :
15
15
xgb = XGBRegressor ()
16
16
xgb .fit (features , target )
17
17
# Predict target for test data
@@ -30,7 +30,7 @@ def main() -> None:
30
30
# Load Boston house price dataset
31
31
boston = load_boston ()
32
32
print (boston .keys ())
33
-
33
+
34
34
features , target = dataset (boston )
35
35
x_train , x_test , y_train , y_test = train_test_split (
36
36
features , target , test_size = 0.25 , random_state = 1
@@ -44,6 +44,7 @@ def main() -> None:
44
44
45
45
if __name__ == "__main__" :
46
46
import doctest
47
+
47
48
doctest .testmod (name = "main" , verbose = True )
48
49
doctest .testmod (name = "dataset" , verbose = True )
49
50
doctest .testmod (name = "xgboost" , verbose = True )
0 commit comments